Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 240: 73-77, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923589

RESUMO

Grapevine (Vitis spp.) can be infected by numerous viruses that are often widespread and of great economic importance. Reliable detection methods are necessary for sanitary selection which is the only way to partly control grapevine virus diseases. Biological indexing and ELISA are currently the standard methods for screening propagation material, and PCR-methods are becoming increasingly popular. Due to the diversity of virus isolates, it is essential to verify that the tests allow the detection of the largest possible virus populations. We developed three quadruplex TaqMan® RT-qPCR assays for detecting nine different viruses that cause considerable damage in many vineyards world-wide. Each assay is designed to detect three viruses and the grapevine Actin as an internal control. A large population of grapevines from diverse cultivars and geographic location was tested for the presence of nine viruses: Arabis mosaic virus (ArMV), Grapevine fleck virus (GFkV), Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), and Grapevine virus B (GVB). In general, identical results were obtained with multiplex TaqMan® RT-qPCR and ELISA although, in some cases, viruses could be detected by only one of the two techniques.


Assuntos
Closteroviridae/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Flexiviridae/isolamento & purificação , Nepovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Tymoviridae/isolamento & purificação , Vitis/virologia , Closteroviridae/genética , Closteroviridae/imunologia , Primers do DNA , DNA Complementar , Flexiviridae/genética , Flexiviridae/imunologia , Nepovirus/genética , Nepovirus/imunologia , Doenças das Plantas/virologia , RNA Viral/isolamento & purificação , Tymoviridae/genética , Tymoviridae/imunologia
2.
Blood ; 109(4): 1442-50, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17047155

RESUMO

Caspases have demonstrated several nonapoptotic functions including a role in the differentiation of specific cell types. Here, we show that caspase-8 is the upstream enzyme in the proteolytic caspase cascade whose activation is required for the differentiation of peripheral-blood monocytes into macrophages. On macrophage colony-stimulating factor (M-CSF) exposure, caspase-8 associates with the adaptor protein Fas-associated death domain (FADD), the serine/threonine kinase receptor-interacting protein 1 (RIP1) and the long isoform of FLICE-inhibitory protein FLIP. Overexpression of FADD accelerates the differentiation process that does not involve any death receptor. Active caspase-8 cleaves RIP1, which prevents sustained NF-kappaB activation, and activates downstream caspases. Together these data identify a role for caspase-8 in monocytes undergoing macrophagic differentiation, that is, the enzyme activated in an atypical complex down-regulates NF-kappaB activity through RIP1 cleavage.


Assuntos
Caspase 8/fisiologia , Diferenciação Celular , Macrófagos/citologia , Monócitos/citologia , NF-kappa B/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia
3.
Gastroenterology ; 131(4): 1142-52, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17030184

RESUMO

BACKGROUND & AIMS: We have previously reported that nitric oxide could induce the death of colon cancer cells. Because an inappropriate activation of beta-catenin has been associated with intestinal cell malignant transformation, we explored whether nitric oxide could affect beta-catenin expression and function. METHODS: Human colon cancer cell lines were treated with the nitric oxide donor glyceryl trinitrate (GTN) before analyzing beta-catenin expression by immunofluorescence, immunoblotting, and immunoprecipitation methods and its transcriptional activity using a luciferase reporter gene driven by a T-cell factor-responsive promotor. RESULTS: GTN induces beta-catenin degradation and down-regulates its transcriptional activity in colon cancer cells. This effect is preceded by GTN-induced tyrosine nitration of beta-catenin, together with its dephosphorylation on serine 33, 37, and 45 and threonine 41. GTN-induced beta-catenin degradation involves proteases that are sensitive to a broad-spectrum caspase inhibitor, z-VAD-fmk, and to serine protease inhibitors N-tosyl-L-phenylalaline chloromethyl ketone (TPCK) and [4-(2-aminoethyl)-benzenesulfonylfluoride] (AEBSF), whereas the ubiquitin/proteasome pathway is not involved. Interestingly, only TPCK and AEBSF restore beta-catenin transcriptional activity and preserve beta-catenin nuclear localization in GTN-treated colon cancer cells. CONCLUSIONS: Exposure of colon cancer cells to nitric oxide unraveled a so-far-unidentified mechanism of beta-catenin regulation. The protein is nitrated and dephosphorylated, and its transcriptional activity is reduced through degradation by a TPCK and AEBSF-sensitive protease.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Óxido Nítrico/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Caspases/metabolismo , Neoplasias do Colo/tratamento farmacológico , Regulação para Baixo/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroglicerina/farmacologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sulfonas/farmacologia , Fatores de Transcrição TCF/metabolismo , Tosilfenilalanil Clorometil Cetona/farmacologia , Fator de Transcrição 4 , Transcrição Gênica/fisiologia , Transfecção
4.
Eur J Neurosci ; 22(5): 1045-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16176346

RESUMO

Two different forms of cell death have been distinguished morphologically following cerebral ischaemia: necrotic and apoptotic cell death. The aim of this study was to investigate the contribution of apoptosis to ischaemic damage by carefully depicting the temporal and spatial neuronal death following focal ischaemia. For this purpose, rats were subjected to chemical photothrombosis, and histological and biochemical analyses were performed over a period of 24 h after the onset of ischaemia. In addition, the effects of the lipophilic antioxidant iron chelator 2,2'-dipyridyl (DP) were evaluated 24 h after photothrombosis when the lesion volume was maximal. Our results showed two separate waves of neuronal death. In the first wave, shrunken dark neurons were massively present as early as 2 h after photothrombosis in the infarct core. From this initial neuronal abnormal population, progressive and time-dependent changes of both necrotic and apoptotic cell death were observed, leading to ghost neurons and apoptotic bodies after 24 h. The extension of the lesion coincided with a second wave of cell death. Massive and rapid neuronal loss occurred at the infarct border, which appeared as a sharply demarcated pale region. Procaspase and poly(ADP-ribose) polymerase-1 (PARP-1) cleavages were also detected in the infarct core and surrounding damaged tissue. DP treatment markedly blocked the enlargement of the lesion, the infarct border being rescued from infarction. Furthermore, a large decrease of apoptotic bodies was associated with a significant drop of caspase and PARP-1 cleavages, suggesting that the protective effect of DP closely correlates with limitation of apoptosis expansion.


Assuntos
2,2'-Dipiridil/uso terapêutico , Apoptose/fisiologia , Isquemia Encefálica/patologia , Quelantes/uso terapêutico , Animais , Western Blotting/métodos , Química Encefálica/fisiologia , Química Encefálica/efeitos da radiação , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Infarto Encefálico/prevenção & controle , Isquemia Encefálica/fisiopatologia , Caspase 3 , Caspase 9 , Caspases/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/fisiologia , Modelos Animais de Doenças , Imunofluorescência/métodos , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Trombose Intracraniana/patologia , Trombose Intracraniana/fisiopatologia , Masculino , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
5.
Gastroenterology ; 123(1): 235-46, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12105852

RESUMO

BACKGROUND & AIMS: We have previously reported the role of nitric oxide in colon tumor regression in vivo. The present study was designed to explore the influence of an endogenous nitric oxide donor, glyceryl trinitrate (GTN), on cell death pathways in colon cancer cells. METHODS: Human colon cancer cell lines were treated with the NO donor GTN. Apoptosis was identified by morphological criteria and the terminal deoxynucleotidyl transferase-mediated deoxyuridine (TUNEL) method. The mitochondrial transmembrane potential was studied by flow cytometry, cytochrome c release by Western blot, and caspase activation by combining fluorogenic peptide substrates, peptide inhibitors, and immunoblotting. Expression of death receptors was studied by flow cytometry and confocal microscopy. RESULTS: GTN induces a dose- and time-dependent cell death by apoptosis in colon cancer cells. This cell death pathway involves the mitochondria and caspases, mainly caspase-1 and caspase-10. In contrast, caspase-3 activation is a late and limited event. Death receptors are not involved in GTN-mediated cell death, while GTN sensitizes tumor cells to Fas-ligand-induced apoptosis. This permissive effect correlates with an increased expression of Fas receptor and a decreased expression of several endogenous inhibitors of apoptosis (IAPs). CONCLUSIONS: Our results indicate that GTN (1) activates an unusual caspase cascade to induce apoptosis in colon cancer cells and (2) sensitizes these cells to Fas-mediated cell death by increasing the expression of Fas and decreasing the expression of several IAPs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Doadores de Óxido Nítrico/farmacologia , Nitroglicerina/farmacologia , Apoptose/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Proteínas de Transporte/metabolismo , Caspase 10 , Caspase 3 , Caspases/metabolismo , Caspases/fisiologia , Neoplasias do Colo/patologia , Grupo dos Citocromos c/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Mitocôndrias/fisiologia , Agregação de Receptores/efeitos dos fármacos , Células Tumorais Cultivadas , Receptor fas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...